This website uses cookies to help us give you the best browsing experience. By continuing to use this portal, you agree to our use of this tool.
To learn more about how we use cookies and how to manage them please read our notice here.
Journal Club
Experimental Paper of the Month - Trifunctional High-Throughput Screen Identifies Promising Scaffold To Inhibit Grp94 and Treat Myocilin-Associated Glaucoma
Trifunctional High-Throughput Screen Identifies Promising Scaffold To Inhibit Grp94 and Treat Myocilin-Associated Glaucoma

Publishing date: April 2018

Author(s): Huard DJE (1), Crowley VM (2), Du Y (3), Cordova RA (4), Sun Z (4), Tomlin MO (1), Dickey CA (4), Koren J 3rd (4), Blair L (4), Fu H (3), Blagg BSJ (5), Lieberman RL (1)

1 School of Chemistry & Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States.
2 Department of Medicinal Chemistry, The University of Kansas , Lawrence, Kansas 66045, United States.
3 Emory Chemical Biology Discovery Center, Department of Pharmacology, Emory University , Atlanta, Georgia 30332, United States.
4 Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida , Tampa, Florida 33612, United States.
5 Department of Chemistry and Biochemistry, The University of Notre Dame , Notre Dame, Indiana 46556, United States.

Gain-of-function mutations within the olfactomedin (OLF) domain of myocilin result in its toxic intracellular accumulation and hasten the onset of open-angle glaucoma. The absence of myocilin does not cause disease; therefore, strategies aimed at eliminating myocilin could lead to a successful glaucoma treatment. The endoplasmic reticulum Hsp90 paralog Grp94 accelerates OLF aggregation. Knockdown or pharmacological inhibition of Grp94 in cells facilitates clearance of mutant myocilin via a non-proteasomal pathway.

Here, we expanded our support for targeting Grp94 over cytosolic paralogs Hsp90α and Hsp90β. We then developed a high-throughput screening assay to identify new chemical matter capable of disrupting the Grp94/OLF interaction. When applied to a blind, focused library of 17 Hsp90 inhibitors, our miniaturized single-read in vitro thioflavin T -based kinetics aggregation assay exclusively identified compounds that target the chaperone N-terminal nucleotide binding site. In follow up studies, one compound (2) decreased the extent of co-aggregation of Grp94 with OLF in a dose-dependent manner in vitro, and enabled clearance of the aggregation-prone full-length myocilin variant I477N in cells without inducing the heat shock response or causing cytotoxicity.

Comparison of the co-crystal structure of compound 2 and another non-selective hit in complex with the N-terminal domain of Grp94 reveals a docking mode tailored to Grp94 and explains its selectivity. A new lead compound has been identified, supporting a targeted chemical biology assay approach to develop a protein degradation-based therapy for myocilin-associated glaucoma by selectively inhibiting Grp94.

ACS Chem Biol. 2018 Feb 20. doi: 10.1021/acschembio.7b01083.

http://www.ncbi.nlm.nih.gov/pubmed/29402077



Experimental Paper of the Month manager: Andreas Boehm




back to top

X