GluA2 Trafficking Is Involved in Apoptosis of Retinal Ganglion Cells Induced by Activation of EphB/EphrinB Reverse Signaling in a Rat Chronic Ocular Hypertension Model

Dong LD (1), Gao F (2), Wang XH (1), Miao Y (1), Wang SY (1), Wu Y (1), Li F (1), Wu J (2), Cheng XL (3), Sun XH (2), Yang XL (1), Wang Z (4)

1 Institutes of Brain Science, Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, People's Republic of China, and.
2 Institutes of Brain Science, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Visual Impairment and Restoration, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, People's Republic of China, and.
3 First Affiliated Hospital of Yangtze University, Jingzhou 434000, People's Republic of China.
4 Institutes of Brain Science, Eye & ENT Hospital, Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Visual Impairment and Restoration, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, People's Republic of China, and.
zfwang@fudan.edu.cn.

EphB1, expressed in Müller cells, and ephrinB2, expressed in both Müller cells and retinal ganglion cells (RGCs), constitute an EphB/ephrinB reverse signaling in RGCs. Whether and how this reverse signaling is involved in RGC apoptosis in a rat chronic ocular hypertension (COH) model was investigated. In the COH model, both EphB1 and ephrinB2 were significantly increased and the reverse signaling was activated, which was accompanied by increased protein levels of phosphorylated (p) src, GluA2, and p-GluA2. Intravitreal injection of EphB2-Fc, an activator of ephrinB2, induced an increase in TUNEL-positive signals in normal retinæ. A coimmunoprecipitation assay demonstrated direct interactions among ephrinB2, p-src, and GluA2. Moreover, in COH rats the expression of GluA2 proteins on the surface of retinal cells was decreased. Such GluA2 endocytosis could be prevented by preoperational intravitreal injection of 4-amino-3-(4-chlorophenyl)-1-(t-butyl) -1H-pyrazolo[3,4-d] pyrimidine (PP2), an inhibitor of src family tyrosine kinases, and possibly involved the protein interacting with C kinase 1 and phosphorylation of GluA2. In normal rats, intravitreal injection of EphB2-Fc caused changes in these protein levels similar to those observed in COH rats, which all could be avoided by preinjection of PP2. Patch-clamp experiments further showed that the current-voltage relationship of AMPA receptor-mediated EPSCs of RGCs exhibited stronger inward rectification in EphB2-Fc-injected rats.

Copyright © 2015 the authors 0270-6474/15/355409-13$15.00/0.
