New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics

Springelkamp H (1,2), Iglesias AI, Mishra A (3,4), Höhn R (5,6), Wojciechowski R, Khawaja AP (7), Nag A (8), Wang YX (9,10), Wang JJ (11), Cuellar (-) Partida G (3), Gibson J (12), Cooke Bailey JN (13), Vithana EN, Gharahkhani P (3), Boutin T (14), Ramdas WD (2), Zeller T (15), Luben RN (16), Yonova (-), Doing E (8), Viswanathan AC (7), Yazar S (17), Cree AJ (18), Haines JL (13), Koh JY (19), Souzeau E (20), Wilson JF (14,21), Amin N (1), Müller C (15), Venturini C (8), Kears J (22), Hee Kang J (23), Consortium N, Tham YC (19,24), Zhou T (20), van Leeuwen EM (1), Nickels S (6), Sanfilippo P (17,22), Liao J (19,24), Linde HV (25), Zhao W (19), van Koolwijk LM (1), Zheng L (19,26), Rivadeneira F (1,27,28), Baskaran M, van der Lee SJ (1), Perera S (19,29), de Jong PT, Oostra BA (25), Uitterlinden AG (1,27,28), Fan Q (19), Hofman A (1,28), Shyong Tai E (29,30,31), Vingerling JR (2), Sim X (31), Wolfs RC (2), Teo YY (31,32), Lemij HG (33), Khor CC (19,26), Willemsen R (25), Lackner KJ (5), Aung T (19,24), Jansonius NM (34), Montgomery G (35), Wild PS, Young TL (36), Burdon KP (37), Hysi PG (8), Pasquale LR (23,38), Wong TY, Klaver CC (1,2), Hewitt AW (22,37), Jonas JB (39), Mitchell P (11), Lotery AJ (18), Foster PJ (7), Vitart V (14), Pfeiffer N (6), Craig JE (20), Mackey DA (17,37), Hammond CJ (8), Wiggs JL (38), Cheng CY, van Duijn CM (1), MacGregor S (40)

1 Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.
2 Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.
3 4 Statistical Genetics, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia.
4 5 Department of Complex Trait Genetics, VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, the Netherlands.
5 6 Department of Ophthalmology, Inselspital, Bern, Switzerland.
6 7 Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany.
7 11 NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.
8 12 Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
9 13 Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
10 14 Beijing Ophthalmology and Visual Science Key Lab, Beijing, China.
11 15 Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia.
12 16 Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK.
13 17 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA.
14 21 Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
15 22 Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany.
16 23 Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK.
Primary open-angle glaucoma (POAG), the most common optic neuropathy, is a heritable disease. Siblings of POAG cases have a ten-fold increase risk of developing the disease. Intraocular pressure (IOP) and optic nerve head characteristics are used clinically to predict POAG risk. We conducted a genome-wide association meta-analysis of IOP and optic disc parameters and validated our findings in multiple sets of
POAG cases and controls. Using imputation to the 1000 genomes (1000G) reference set, we identified 9 new genomic regions associated with vertical cup disc ratio (VCDR) and 1 new region associated with IOP. Additionally, we found 5 novel loci for optic nerve cup area and 6 for disc area. Previously it was assumed that genetic variation influenced POAG either through IOP or via changes to the optic nerve head; here we present evidence that some genomic regions affect both IOP and the disc parameters. We characterized the effect of the novel loci through pathway analysis and found that pathways involved are not entirely distinct as assumed so far. Further, we identified a novel association between CDKN1A and POAG. Using a zebrafish model we show that six6b (associated with POAG and optic nerve head variation) alters the expression of cdkn1a. In summary, we have identified several novel genes influencing the major clinical risk predictors of POAG and showed that genetic variation in CDKN1A is important in POAG risk.

© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


PMID: 28073927