microRNA dysregulation in neurodegenerative diseases: A systematic review

Juzwik CA (1), Sage-Drake S (2), Zhang Y (3), Paradis-Isler N (4), Sylvester A (5), Amar-Zifkin A (6), Douglas C (7), Morquette B (8), Moore CS (9), Fournier AE (10).

1 McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada. Electronic address: camille.juzwik@mail.mcgill.ca.
2 McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada. Electronic address: sienna.drake@mail.mcgill.ca.
3 McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada. Electronic address: yang.zhang5@mail.mcgill.ca.
4 McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada. Electronic address: nicolas.paradis-isler@mcgill.ca.
5 McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada. Electronic address: alexandra.sylvester@queensu.ca.
6 McGill University Health Centre- Medical Libraries, 3801 University Street, Montréal, QC, H3A 2B4, Canada. Electronic address: alex.amar@muhc.mcgill.ca.
7 Program Manager, Plotly Technologies Inc, 5555 Gaspe Avenue #118, Montréal, QC, H2T 2A3, Canada. Electronic address: cldougl@gmail.com.
8 McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada. Electronic address: barbara.morquette@mcgill.ca.
9 Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada. Electronic address: craig.moore@mun.ca.
10 McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada. Electronic address: alyson.fournier@mcgill.ca.

While the root causes for individual neurodegenerative diseases are distinct, many shared pathological features and mechanisms contribute to neurodegeneration across diseases. Altered levels of microRNAs, small non-coding RNAs involved in post transcriptional regulation of gene expression, are reported for numerous neurodegenerative diseases. Yet, comparison between diseases to uncover commonly dysregulated microRNAs during neurodegeneration in general is lagging. We performed a systematic review of peer-reviewed publications describing differential microRNA expression in neurodegenerative diseases and related animal models.

We compiled the results from studies covering the prevalent neurodegenerative diseases in the literature: Alzheimer's disease, amyotrophic lateral sclerosis, age-related macular degeneration, ataxia, dementia, myotonic dystrophy, epilepsy, glaucoma, Huntington's disease, multiple sclerosis, Parkinson's disease, and prion disorders. MicroRNAs which were dysregulated most often in these diseases and their models included miR-9-5p, miR-21-5p, the miR-29 family, miR-132-3p, miR-124-3p, miR-146a-5p, miR-155-5p, and miR-223-3p. Common pathways targeted by these predominant miRNAs were identified and revealed great functional overlap across diseases. We also identified a strong role for each microRNA in both the neural and immune components of diseases. microRNAs regulate broad networks of genes and identifying microRNAs commonly dysregulated across
neurodegenerative diseases could cultivate novel hypotheses related to common molecular mechanisms underlying neurodegeneration.

Copyright © 2019 Elsevier Ltd. All rights reserved.
