Optic disc size can be quickly assessed at the slit lamp

The Science behind the Tip

Optic disc size influences the significance of the cup/disc ratio\(^1\,^2\). Disc size can be estimated using a handheld high power convex lens and the adjustable beam height on the slit lamp\(^3\). A small beam is adjusted to the vertical diameter of the optic disc (most accurate in a dilated fundus) and its length is read on the scale of the slit lamp (Figures). This value needs to be modified by a magnification factor depending on lens power and material (Table)\(^4\), and may vary slightly with its distance from the cornea and in high refractive disorders (> +/- 8D).

A disc is considered small if \(\leq 1.2\) mm and large if \(\geq 1.8\) mm\(^5\). Since we mostly use one lens, we can calculate our personal slit lamp mm-range of normal disc size. Regardless of minor inaccuracies, we are able to confirm our clinical impression of abnormal disc size and identify a very small or large disc.

<table>
<thead>
<tr>
<th>lens</th>
<th>+60D Volk-Nikon</th>
<th>+78D Volk</th>
<th>+90D Volk-Nikon</th>
<th>Superfield NC Volk</th>
</tr>
</thead>
<tbody>
<tr>
<td>correction factor</td>
<td>0.94-1.03</td>
<td>1.13</td>
<td>1.36-1.59</td>
<td>1.50</td>
</tr>
</tbody>
</table>

References

Contributor: Veva De Groot, Antwerp

Optic Disc Evaluation