Effect of patient's life expectancy on the cost-effectiveness of treatment for ocular hypertension

Kymes SM, Plotzke MR, Kass MA, Boland MV, Gordon MO.

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Campus Box 8096, 660 S Euclid Ave, St Louis, MO 63110-1093, USA. kymes@vrcc.wustl.edu

OBJECTIVE: To assess the influence of expected life span on the cost-effectiveness of treating ocular hypertension to prevent primary open-angle glaucoma.

METHODS: We used a Markov simulation model to estimate the cost and benefit of ocular hypertension treatment over a person's remaining life. We examined the influence of age on the cost-effectiveness decision in 2 ways: (1) by evaluating specific age cohorts to assess the influence of age at the initiation of treatment; and (2) by evaluating the influence of a specific life span.

RESULTS: At a willingness to pay $50,000/quality-adjusted life year to $100,000/quality-adjusted life year, treatment of people with a 2% or greater annual risk of developing glaucoma was cost-effective for people aged 45 years with a life expectancy of at least 18 remaining years. However, to be cost-effective, a person aged 55 years must have a life expectancy of 21 remaining years and someone aged 65 years must have a life expectancy of 23 remaining years.

CONCLUSIONS: A person with ocular hypertension must have a life expectancy of at least 18 remaining years to justify treatment at a threshold of a 2% or greater annual risk of developing glaucoma. Persons at higher levels of risk require a life expectancy of 7 to 10 additional years to justify treatment.

PMID: 20457984 [PubMed - indexed for MEDLINE]